Dr. Marques Sophie Office 519 Linear algebra

Fall Semester 2013 marques@cims.nyu.edu

Exercise $1(\star)$:

Prove that for $A, B \in M_n(K)$, we have:

- 1. $||\lambda A||_{\infty} = |\lambda| \cdot ||A||_{\infty}$, all $\lambda \in K$,
- 2. $||A + B||_{\infty} \le ||A||_{\infty} + ||B||_{\infty};$
- 3. $||AB||_{\infty} \le n \cdot ||A||_{\infty} ||B||_{\infty}.$

Exercise $2(\star)$:

All limits are seen in $|| \cdot ||_{\infty}$ -norm as $n \to \infty$. If $A_n \to A$ and $B_n \to B$ and $\lambda_n \to \lambda$ in \mathbb{C} . Prove that:

- 1. $A_n + B_n \rightarrow A + B$
- 2. $A_n B \to AB$ and $AB_n \to AB$;
- 3. $A_n B_n \rightarrow AB$ (matrix multiplication is jointly continuous operator in its two imputs).

Hint: Add and subtract $A_n B$, then apply the triangle inequality.

- 4. $QA_nQ^{-1} \rightarrow QAQ^{-1}$ for A square matrix and Q invertible matrix.
- 5. $\lambda_n A_n \to \lambda A$.

Exercise 3(\star): Determine whether the matrix

$$A = \left(\begin{array}{rrr} 7 & -4 & 0\\ 8 & -5 & 0\\ 6 & -6 & 3 \end{array}\right)$$

is diagonalizable over $K = \mathbb{R}$ or \mathbb{C} . In any case, find basis vectors for eigenspace $E_{\lambda}(L_A)$.

Exercise $4(\star)$: The matrix

$$A = \left(\begin{array}{rrrrr} 1 & 0 & -1 & 3\\ 2 & -1 & 0 & 7\\ 1 & -2 & 3 & 5 \end{array}\right)$$

is row equivalent to

$$\left(\begin{array}{rrrr} 1 & 0 & -1 & 3 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Its transpose is row equivalent to

$$\left(\begin{array}{rrrr} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

Now consider the linear map $L_A : V \to W$ between the vector spaces $V = K^4$ and $W = K^3$.

- 1. Find bases for $K(L_A) \subseteq V$ and $R(L_A) \subseteq W$.
- 2. Find bases \mathcal{X}, \mathcal{N} for V, W such that $[L_A]_{\mathcal{N},\mathcal{X}}$ takes the form

$$\begin{pmatrix} 1 & 0 \\ & & \\ & & 0 \\ 0 & 1 \\ \hline & 0 & 0 \\ \hline & & & \end{pmatrix}$$

Exercise 5(*): If the linear operator $T : \mathbb{R}^3 \to \mathbb{R}^2$ has matrix

$$A = \left(\begin{array}{rrr} 3 & 1 & 2 \\ 1 & 0 & -1 \end{array}\right)$$

with repect to the standard basis, find the matrix $[T]_{\mathcal{N},\mathcal{U}}$ of the operation with respect to the new bases

$$\mathcal{U}: u_1 = (0, 1, -1), \ u_2 = (2, 2, -1), \ u_3 = (4, 0, 1)$$

 $\mathcal{N}: v_1 = (1, -1), \ v_2 = (0, -1)$